Volume 13 Number 3 1985 Nucleic Acids Research

The genes for yeast ribosomal proteins S24 and L46 are adjacent and divergently transcribed

Robert J.Leer, Mary M.C.van Raamsdonk-Duin, Paul Kraakman, Willem H.Mager and Rudi J.Planta

Biochemisch Laboratorium, Vrije Universiteit, de Boelelaan 1083, 1081 HV Amsterdam, The
Netherlands

Received 4 December 1984; Accepted 7 January 1985

ABSTRACT

Unlike most yeast ribosomal protein genes studied so far the genes
coding for S24 and L46 are adjacent on the genome. Sequence analysis showed
that the two genes are transcribed divergently, their initiation codons being
630 bp apart. Taking the respective ATG translation start sites as reference
points, the 5'- end of L46 mRNA was mapped at position -26, while the S24 mRNA
showed two major 5'-ends mapping at positions -13 and -16 respectively. Unlike
most other yeast ribosomal protein genes, the gene for S24 does not contain an
intron. Its coding region encompasses 390 nucleotides encoding a protein of
14762 D. The gene for L46 on the other hand is split by an intron of 386
nucleotides starting after its second codon. This gene encodes a small, very
basic protein having a molecular weight of 6334 D. Yeast ribosomal proteins
S24 and L46 show striking homologies with ribosomal proteins from other
organisms. In particular, yeast L46 is clearly the evolutionary counterpart
of rat liver L39. A search of the intergenic region for sequence elements
previously identified as common to most yeast ribosomal protein genes, reveal-
ed the presence of a single conserved box (RPG-box) roughly equidistant from
the transcription initiation sites of both genes. We suggest that this box
acts as a regulatory signal in either orientation and thus influences the
expression of both genes simultaneously.

INTRODUCTION

With the aim to elucidate the molecular mechanisms underlying the
coordinate regulation of ribosomal protein gene expression in yeast we have
characterized several cloned yeast ribosomal protein genes (1-6). It turned
out that most ribosomal protein genes share some general characteristics:
they are not clustered, occur duplicated on the yeast genome and contain an
intron near their 5'-end. In some cases two different ribosomal protein genes
appear to be physically linked. For instance the split genes encoding S16A and
rp28 are separated by only 600 bp and are transcribed in the same direction
(5). In this paper we describe a second pair of linked yeast ribosomal
protein genes. The split gene coding for L46 and the unsplit gene coding for
524 were found to be located adjacent to each other in a head-to-head arrange-

ment. The intergenic region consists of about 600 bp and must contain the
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signals controlling the expression of both genes.

MATERIALS AND METHODS

DNA_preparation and sequence analysis

Plasmid pBMCY135 containing the genes coding for $S24 and L46 was
purified as described previously (2). Restriction enzyme digestions were
performed as recommended by the suppliers (New England Laboratories;
Boehringer Mannheim). Appropriate DNA fragments were subcloned in M13 mp8 or
mp9, and sequence analysis was carried out according to the dideoxy chain
termination method (7).
Primer extended sequence analysis of mRNA

RNA sequencing using reverse transcriptase was performed as described
elsewhere (4). The primer for the S24 gene was labelled by repair synthesis
of the subcloned BglII-Bglll fragment in MI13 mp8. Subsequent digestion of the
labelled fragment with Sau3A yielded a 162 nucleotides long primer (see
Fig. 1). The primer for mapping the 5'-end of the L46-transcript was a 55
nucleotide fragment obtained by digestion with Sau3A plus HinfI of cDNA
synthesized using the subcloned HaeIII-HaeIll fragment in M13 mp8 (see Fig. 1)

9).

RESULTS AND DISCUSSION

a. Structure of the gemes for yeast ribosomal proteins 524 and L46

From a colony bank of HindIII-generated yeast DNA fragments in pBR322
several recombinants containing yeast ribosomal protein genes have been
isolated (2). Hybrid-selected in vitro translation followed by two-dimensional
gel electrophoresis revealed that recombinant plasmid pBMCY135 carries at
least the genes encoding yeast ribosomal proteins S24 and L46 (9). The
pertinent physical map is presented in Fig. 1A. Electron microscopic R-loop
analysis, successfully used in locating a number of ribosomal protein genes
on cloned DNA fragments (9), in this case led to only a rough estimate of the
position of the two genes, because of the complexity of the R-loop structures
observed (9). However, on the basis of the known N-terminal amino acid
sequence of ribosomal protein S24 (which is identical to YS22 - [10]) as well
as the preferent codon usage observed within yeast ribosomal protein genes
(2), we could predict a Bglll site at the very 5'-end of the S24 coding
sequence. Starting from these assumptions the sequencing strategy for both
ribosomal protein genes as outlined in (the legend to) Fig. 1B was developed.

The results of the nucleotide analysis are shown in Fig. 2. The gene coding
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Fig. 1. Map of the insert of pBMCY135 and structural analysis of the genes
coding for S24 and L46.

The position of some restriction enzyme sites indicated in A was published
previously (9). H = HindIII, E = EcoRl, Bg = BgllI, B = BamHI, Hp = HpaI,
Ha = HaelIlII, R = Rsal.

In B the sequence strategy is shown. The arrows give the extent of nucleotide
analysis. The 162 and 55 nucleotides long primers used for the cDNA synthesis

are indicated.
In C the structures of the 524 and L46 transcripts are given.

for 824 contains an uninterrupted reading frame of 390 nucleotides, whereas
the coding region of the L46 gene comprises 153 nucleotides which is inter-

rupted after the second codon by an intervening sequence of 386 nucleotides.

In contrast to the clustered rp28 and S16A genes which are transcribed in the

same direction (5), the tramnscription of the genes for $S24 and L46 is diver-
gent. Their translation initiation sites are 630 bp apart. Southern analysis
suggested that the L46 gene is unique whereas the S$24 gene may be duplicated
on the yeast genome (result not shown; [11]).
b. Mapping of the 5'-ends of the mRNAs

The cap sites of both the L46 and S24 gene were determined by primer-
extended cDNA synthesis. Using a Sau3A-Sau3A primer fragment for reverse
transcription (see Fig. 1) two major 5'-ends of the S24 mRNA were mapped at

position -13 and -16. In addition to these major transcription start sites a

minor site at -22 was observed (see Fig. 3A). Heterogeneous 5'-ends have also

been observed for several other yeast ribosomal protein mRNAs (e.g. Ref. 3).
Mapping of the 5'-end of the L46 transcript, by use of a Hinfl-Sau3A primer

fragment (Fig. 1), revealed a dominant transcription start site located at
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26 nucleotides upstream from the translation start codon. A weak primer

extended product was found at -22 nucleotides (see Fig. 3B).

In this case the

mRNA sequence determination also provided definite proof for the presence of

an intron within the L46 gene.

The nucleotide structure of the transcription

initiation regions is in good agreement with the structure of other cap sites

previously found for other yeast ribosomal protein genes (3).
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Fig. 2. DNA sequence of the genes for yeast ribosomal proteins $24 (A) and
L46 (B). The nucleotides are numbered starting from the first nucleotide of
the respective initiation codons. The positions of the 5'-ends of the 524 and
L46 mRNA are indicated by triangles (4 major-, A minor start site).

In addition conserved sequence elements occurring in the non-coding regiomns
are underlined.

For the sake of clarity the intergenic region is shown in both DNA sequences.
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Fig. 3. Sequence analysis of the 5'-ends of the 824 (A) and L46 (B) mRNAs.
cDNA synthesis was performed as described in Materials and Methods using the
162 and 55 nucleotides long primers depicted in Fig. 1. The arrows indicate
the 5'-termini of the respective mRNAs; 'intron' indicates the splice junction
in the L46-gene.

c. Ihe structure of ribosomal proteins S24 and 146

Yeast ribosomal protein S24 as deduced from the nucleotide sequence of
its gene is a protein of 14762 D with a net positive charge of +9, while L46
is a very small and extremely basic protein with a molecular weight of 6334 D
and a net charge of +17.

The amino acid sequences of S24 and L46 as deduced from the nucleotide
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sequence are in perfect agreement with the N-terminal amino acid sequences
determined by Otaka et al. (12,13) for the proteins YS22 and YL40, which are
identical to S24 and L46 respectively (10,14). The amino acid sequence of

yeast S24 is partially homologous to that of HS20 from Halobacterium cutirubrum

(12), while yeast L46 shows a strong similarity to L36 from

Schizosaccharomyces pombe (13). Even more striking is the extended sequence

homology of yeast L46 and rat liver L39 (|[15]; see Fig. 5). This finding
indicates the existence of evolutionary constraints on the structure of at
least some ribosomal proteins which suggests a fundamental role of these
proteins in the structure and function of the ribosome.

The intergenic DNA region of 588 nucleotides between the transcription
initiation sites of the divergently transcribed L46 and S24 genes is expected
to contain the signals controlling the expression of both ribosomal protein
genes. Previous computer analysis has revealed several conserved boxes
upstream of most yeast ribosomal protein genes that might act as regulatory
signals (16). The most striking of these boxes is a 12-nucleotide long
element (HOMOL 1) having the consensus sequence AACATCCiT§CA Neither strand
of the intergenic region, however, contains this sequence element. On the
other hand, another, recently detected, conserved sequence element (17), is
present in the intergenic region. This element, the RPG-box, having the
consensus sequence ACCCATACATTT, occurs once on the non-coding strand of the
S24 gene at position -268 relative to the translation start site, which
corresponds to position -363 relative to the translation start of the L46
gene (Fig. 2A,B).

In the latter case the RPG-box of course is located on the coding

strand and its orientation relative to the gene is reversed. Since the RPG-box

is found at about the same relative position upstream of most other yeast

GTOZ ‘TE AN Uo Usssalo) gn e /Bio'sfeuinolploxo ey :dny wodj papeojumoq

ribosomal protein genes (17) sometimes in one and sometimes in the other

orientation, we suggest that the single box present in the intergenic region

524 ATAATCTTAATCGA CTATTCAATTCTTAAATTGTAACGTTT

L16~-1 ATACTGTTAAGAGAGGCATTCATTTCGTGTATTATAACGTTT

524 -12 n-TCAGTT-16 n-AACA ACCAACATACATATCCAAG ATG

L16-1 - 4 n-TCAGTT-14 n-AACATACAAAAATACGCGTTCAAG ATG

Fig, 4. Sequence homology in the upstream regions of the genes for S$24 and
L16-1 (16). The positions of identical bases are indicated by a dot.
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Fig. 5. Comparison of the primary structure of yeast ribosomal L46 with
Identical amino acids are boxed,

functional identical ones are indicated by dotted lines.

ribosomal protein L39 from rat

liver (15).

of the L46 and S24 genes is involved in controlling the expression of both

genes.

The upstream sequence of the S24 gene shows a remarkable homology with

the 5'-flanking region of a gene encoding yeast ribosomal protein L16 (see

Fig. 4). Similar homologies have been found for other pairs of different

yeast ribosomal protein genes (17).

It is therefore tempting to speculate that

these regions are involved in the coordinate transcription of the respective

genes. No sequence conservation could be detected comparing the upstream

sequence of the L46-gene with any other of the known yeast ribosomal protein

gene sequences.

The sequences 3' to the coding regions contain the conserved boxes

implied in termination and/or polyadenylation (Fig. 2A,B; Ref. 18,19).

Finally the intron of the L46-gene contains all conserved sequence

elements found in the other split yeast nuclear (ribosomal) protein genes

(16,17,20,21,22), viz. GTATGT at 5'-splice site, TAG at the 3'-end and

TACTAACA which in the L46 intron is located 61 nucleotides from the 3'-splice

junction., The latter sequence element has recently been suggested to represent

the target-site for generating a lariat-like structure intermediate in the

splicing of pre-mRNAs in yeast (J. Abelson cited in 23;24).

ACKNOWLEDGEMENTS

The authors are grateful to Drs L.P. Woudt and R.T.M. Nieuwint for

stimulating discussions, to Dr. H.A. Raué for critical reading of the

708

GTOZ ‘TE AeIN UO USSSIIS) g Te /BI0'S euIno pIo X0 feu//:dny woJj pepeoumod


http://nar.oxfordjournals.org/

Nucleic Acids Research

manuscript and to Mrs. P.G. Brink for preparing the typescript.
This work was supported in part by the Netherlands Foundation for
Chemical Research (S.0.N.) with financial aid from the Netherlands

Organization for the Advancement of Pure Research (Z.W.0.).

REFERENCES

1. Leer,R.J., Van Raamsdonk-Duin,M.M.C., Molenaar,C.M.T., Cohen,L.H.,
Mager,W.H. and Planta,R.J. (1982) Nucl. Acids Res. 10, 5869-5878.

2. Leer,R.J., Van Raamsdonk-Duin,M.M.C., Schoppink,P.J., Cornelissen,M.T.E.,
Cohen,L.H., Mager,W.H. and Planta,R.J. (1983) Nucl. Acids Res. 11,
7759-7768.

3. Leer,R.J., Van Raamsdonk-Duin,M.M.C., Hagendoorn,M.J.M., Mager,W.H. and
Planta,R.J. (1984) Nucl. Acids Res. 12, 6685-6700.

4. Leer,R.J., Van Raamsdonk-Duin,M.M.C., Mager,W.H. and Planta,R.J. (1984)
FEBS Lett. 175, 371-376.

5. Molenaar,C.M.T., Woudt,L.P., Jansen,A.E.M., Mager,W.H., Planta,R.J.,
Donovan,D. and Pearson,N.J. (1984) Nucl. Acids Res. 12, 7345-7358.

6. Schaap,P.J., Molenaar,C.M.T., Mager,W.H., and Planta,R.J. (1984) Curr.
Genet,, in press.

7. Sanger,F., Coulson,A.R., Barrell,B.G., Smith,A.J.H. and Roe,B.A. (1980)
J. Mol, Biol. 143, 161-178,

8. Bollen,G.H.P.M., Cohen,L.H., Mager,W.H., Klaassen,A.W. and Planta,R.J.
(1981) Gene 14, 279-287,

9. Bollen,G.H.P.M., Molenaar,C.M.T., Cohen,L ,H., Van Raamsdonk-Duin,M.M.C.,
Mager ,W.H. and Planta,R.J. (1982) Gene 18, 29-37.

10. Bollen,G.H.P.M., Mager,W.H. and Planta,R.J. (1981) Mol. Biol. Rep. 8,
37-44.

11, Molenaar,C.M.T. (1984) Ph.D. Thesis, Free University, Amsterdam.

12. Otaka,E., Higo,K. and Osawa,S. (1982) Biochemistry 21, 4545-4550.

13. Otaka,E., Higo,K. and Itoh,T. (1983) Mol. Gen. Genet. 191, 519-524.

14, Michel,S., Traut,R. and Lee,J. (1983) Mol. Gen. Genet. 191, 251-256.

15. Lin,A., McNall,J. and Wool,I.R. (1984) J. Biol. Chem. 259, 487-490,.

16. Teem,J.L., Abovich,N., Kdufer,N.F., Schwindinger,W.F., Warner,J.R.,
Levy,A., Woolford,J., Leer,R.J., Van Raamsdonk-Duin,M.M.C., Mager,W.H.,
Planta,R.J., Schultz,L., Friesen,J.D. and Rosbash,M. (1984) Nucl. Acids
Res., in press.

17, Leer,R.J., Van Raamsdonk-Duin,M.M.C., Mager,W.H. and Planta,R.J. (1985)
submitted.

18, Fitzgerald,M. and Schenk,T. (1981) Cell 24, 251-260.

19. Zaret,K.S. and Sherman,F. (1982) Cell 28, 563-573.

20. Miller,A.M. (1984) The EMBO J. 3, 1061-1065.

21, Langford,C.J. and Gallwitz,D, (1983) Cell 33, 519-527.

22, Langford,C.J., Klinz,F.J., Donath,C. and Gallwitz,D. (1984) Cell 36,
645-653.

23. Ruskin,B., Krainer,A.R., Maniatis,T. and Green M.R. (1984) Cell 38,
317-331.

24. Padgett,R.A., Konarska,M.M., Grabowski,P.J., Hardy,S.F. and Sharp,P.A.
(1984) Science 225, 898-903.

709

GTOZ ‘TS AN UO UBSSSIS) g e /6I0'S[euIno [pJo)xo" feu//:dny wouj papeo|umod


http://nar.oxfordjournals.org/



